YES 0.834 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule Main
  ((inRange :: (Char,Char ->  Char  ->  Bool) :: (Char,Char ->  Char  ->  Bool)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Main
  ((inRange :: (Char,Char ->  Char  ->  Bool) :: (Char,Char ->  Char  ->  Bool)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ LetRed

mainModule Main
  ((inRange :: (Char,Char ->  Char  ->  Bool) :: (Char,Char ->  Char  ->  Bool)

module Main where
  import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
fromEnum c <= i && i <= fromEnum c'
where 
i  = fromEnum ci

are unpacked to the following functions on top level
inRangeI vx = fromEnum vx



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
HASKELL
              ↳ Narrow

mainModule Main
  (inRange :: (Char,Char ->  Char  ->  Bool)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_not(Succ(vy4000), Succ(vy31000)) → new_not(vy4000, vy31000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_asAs(Succ(vy3000000), Succ(vy400000), vy6) → new_asAs(vy3000000, vy400000, vy6)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: